
Logical Instruments: Regular Expressions, AI and

thinking about thinking

Christopher M. Kelty 1

16 December 2008

1University of California, Los Angeles, Department of Information Studies and
the Center for Society and Genetics

introduction

This chapter revisits the origins of AI in the context of the history of soft-1

ware and computer science. This might seem an obvious thing to do, but it2

is not. For one, the period from roughly 1940 to 1960 was a time of relentless3

fantasizing about the potential of the new calculating machines and the new4

science appropriate to them—alternately christened cybernetics, automata5

studies, artificial intelligence, mechanization of thought processes, and com-6

puter science, among others. Researchers from an incredibly large range of7

disciplines struggled to understand and define what computers, computa-8

tion, and the control of mechanical logical processes would come to mean.9

Proposals for the future and research programs designed to achieved them10

were abundant and varied, and no one was certain what the computer itself11

would become: giant brain? industrial calculator? military weapon? au-12

tomatic linguistic translator? cybernetic organism? experimental device?13

communications system?14

It was a period of tremendous experimentation and exploration, and ar-15

tificial intelligence of the form promoted by John McCarthy, Allan Newell,16

Herbert Simon and Marvin Minsky was but one fine thread. All of these17

men were involved in multiple attempts to define the computer, along with a18

wide range of others, from a youthful Noam Chomsky to John von Neumann19

from neuroscientist-philosophers to circuit-designing engineers and abstract20

object-loving mathematicians. All of them played with the ideas and tech-21

nologies of the time with but vague ideas of what they would become. Hence22

it is worth looking back to this period from the perspective of the software,23

1

networks and computing devices we have created, in order to ask: how does24

thinking about thinking proceed?25

The period from 1940-1960 is also witness to a division that haunts com-26

puter science into the present period: is the computer a tool for thinking,27

or a replacement for it? Artificial intelligence proponents like Newell and28

Simon made the leap instantly from rudimentary logic problem solving pro-29

grams to a autonomous thinking machine. Rather than speak of computers30

and computational science as aids to thought (as many at the time did, from31

Vannevar Bush to Warren Weaver to JCR Licklider), they leapt instantly32

to speaking of them as thinking entities. Later, critics like Dreyfus and33

Suchman (among many others) would argue that this reduction of human34

thinking to logical problem solving was philosophically impoverished and an35

impossible research program [Agre, 1997, Suchman, 1987, Dreyfus, 1992].36

But close attention to this period reveals that not everyone confronting the37

computer equated logic and human reasoning. For many, the computer re-38

mained a tool to think with, a way to try out and test ideas in a mechanical39

form in order to generate concepts and results which could give meaning40

and form to the practice of mechanical reasoning. In short, many people in41

this period treated logical reasoning not as the basis of human thought, but42

a companion to it, as an instrument to be explored and put to use. As a43

logical instrument to reason with not against.44

This chapter tells the story of one such “logical instrument”: regular45

expressions. Regular expressions are (today) both a ubiquitous program-46

ming tool and a keystone in the edifice of theoretical computer science.1 By47

1Regular expressions are central to the construction of programming languages, es-

2

exploring the history of these arcane tools, it is possible to demonstrate how48

the development of logic and mechanical reasoning proceeds alongside, and49

in conversation with human reasoning and exploitation of these tools. As50

such, this story does not take sides for or against claims made about artifi-51

cial intelligence (such as the critiques made by Dreyfus), but seeks instead52

to observe, historically and anthropologically, how thinking proceeds; I use53

the case of regular expressions to show how concepts evolve and are made54

concrete, even (and perhaps most significantly) concepts meant to capture55

the foundations of thought itself. It is this objectification, or “registration”56

[Smith, 1996] of objects as having a certain stability and tractability which57

I attempt to demonstrate through the historical analysis of the half-century58

long transformation of the idea of regular expressions. Such an approach59

is broadly pragmatic in its understanding of logic, thought and concepts as60

things concretely tested against reality.261

pecially in tools that partially automate the process, such as compilers, parsers, lexical
analyzers and compiler compilers. By 1969, regular expressions had been incorporated
into computer science curricula in most of the major programs as part of classes on formal
languages and automata theory. The first textbook was Hopcroft and Ullman’s Formal
languages and their relation to automata [Hopcroft and Ullman, 1969]; current textbooks
retain much of the same structure and material, e.g. Peter Linz’s An Introduction to
Formal Languages and Automata [Linz, 2001]

2In particular, the work Dewey undertook in Experimental Logic [Dewey, 2004,
Hester et al., 2007]. Pragmatist approaches to AI seem few and far between, but see
[Burke, 1995]. Recent work by Okrent has extended a Dewey-inspired reading of Heideg-
ger that focuses on intentionality and tool-use as one way to reformulate the philosophical
basis of rationality. Intentionality as a case of tool-use is close to what is sought here as an
explanation in the case of regular expressions, though the present case does not fit neatly
within Okrent’s explanation of intentionality, in part because the actors discussed here
do not always understand their own manipulations of logical systems as a tool-oriented,
intentional activity. And yet, I argue, it is possible to understand what they have done
within this frame, and that this re-description is a step towards articulating the under-
standing of intentionality necessary to remove logic from the domain of pure reason and
show its function in the domain of practical reason, especially after the advent of software
and programmable computers. See especially [Okrent, 2007, Okrent, 1991]

3

The range of transformations that regular expressions have gone through62

is impressive and surprising: they emerge out of the work of Rudolph Carnap63

on the syntax of logic, are transformed by McCulloch and Pitts into a logical64

calculi of nerve nets, picked up by John von Neumann for his description65

of the EDVAC computer, and later his theory of automata, formalized (and66

given the name “regular expressions”) by mathematician Stephen Kleene,67

used to design state diagrams for circuits by Janusz Brzozowski, imple-68

mented in software for the first time by Ken Thompson (who also held a69

patent on their use for pattern matching), re-implemented in a variety of70

text editors such as emacs and vi,used in a wide variety of basic textbooks71

in computer science and built into nearly every programming language in72

use into the present.73

In telling this story of transformations, I demonstrate how human reason-74

ing develops in concert with (indeed, through) the logical tools for thinking75

that we create. Such a claim is increasingly obvious given our contemporary76

reliance on software and computation to guide thinking, and yet we have no77

clear understanding of how we have created such a possibility for ourselves.78

The period 1940-1960 is key to understanding how logics went from being79

the ultimate basis for all human and mathematical reasoning (in the sense of80

Hilbert’s program) to domesticated creatures just barely under our control,81

living alongside us, keeping us company, thinking with us, thinking about82

thinking.83

4

Regular Expressions, a brief history,84

with backreferences85

Regular Expressions are widely known as a powerful and useful tool for86

matching patterns in text. As is clear from the very popular web-comic xkcd87

(See Fig 1), possessing knowledge of how to use these tools can be powerful,88

heroic even. The utility and ubiquity of Regular Expressions is a bit of a89

self-fulfilling prophecy; with the spread of the Internet has come the spread90

of structured text as a mode of interaction and transfer of data. HTML and91

XML (and its parent SGML) especially have created the possibility for, and92

the need for, the automatic processing, manipulation and reformatting of93

structured text. Regular expressions are the right tool for the job because94

they permit a programmer to write concise and general expressions that95

match a wide range of variable terms in structured text.96

For example, a simple verbatim pattern like ’cat’ will match the word97

cat, while a pattern such as [cat(.*)] will match any word beginning with98

cat. A regular expression can also match, for instance, the word cat at the99

beginning of a line or dog at the end of one, thus:100

[(^cat|dog$)]101

And sophisticated uses such as matching any email address are also possible:102

{\b[A-Z0-9._%+-]+@[A-Z0-9.-]+.([A-Z]{2,4})\b}103

Regular Expressions match only syntactic or lexical features; they cannot104

match semantic features unless they can by tied to some kind of lexical or105

5

syntactic pattern. Nonetheless, they are widely used because they are built-106

in features of the most popular programming languages like C++, Java,107

Perl and Python. Perl in particular, was one of the first scripting (or ’glue’)108

languages to make extensive use of regular expressions since it was used109

extensively in the early spread and development of the World Wide Web.110

Jeffrey Friedl’s book Mastering Regular Expressions [Friedl, 2006] taught a111

generation of programmers how to apply regular expressions to problems of112

Figure 1: “Regular Expressions” xkcd web-comic by Randall Munroe. Used
with permission (Creative Commons Attribution-NonCommercial 2.5 Li-
cense).

6

all kinds; from pattern matching to text searching, to processing and format-113

ting streams of data like stock quotes or database queries. What’s more,114

modern implementations include the ability to “back-reference” patterns,115

allowing sophisticated ways to search and replace bits and pieces of a patter116

(such as replacing the ’.com’ section of an email with ’.edu’). Combined117

with other line-oriented UNIX-based processing tools, regular expressions118

are now part of an arsenal of text and data manipulation tools that allow us119

to control at least some of our symbol-saturated information environment120

today.121

As a tool, its proliferation is tied to the proliferation of the UNIX op-122

erating system in the 1980s and the growth of Free Software in the 1980s123

and 1990s[Kelty, 2008]. Current versions of regular expressions trace their124

roots to Henry Spencer’s implementation in perl in the 1980s which was125

widely disseminated via USEnet and the Internet. But prior to this, regular126

expressions were implemented in a variety of tools in the UNIX Operating127

System. grep is the most famous of these tools—so famous that it is used128

colloquially by geeks to mean “search” as in “I grepped for my socks.” grep129

is standard on every UNIX operating system, including now the Macintosh130

OS. The modern forms of grep, known as egrep and fgrep owe their exis-131

tence to the work of Alfred Aho, who created them for the UNIX operating132

system during his time at Bell Labs (1963-1990). Aho’s versions of grep was133

combined with a tool called sed (Stream EDitor) by Larry McMahon, and134

led to the creation of a widely used programming language, with Peter Wein-135

berger, and Brian Kernighan called awk (after the initials of its inventors).136

awk emphasized string data types, text processing and regular expressions.137

7

awk was an inspiration for perl in the 1980s.3138

But what most users of regular expressions as a tool do not know, ex-139

cept in outline, is the long and peculiar history of regular expressions. All140

of these implementations in software trace back to the work of Ken Thomp-141

son, one of the inventors of the UNIX operating system, who was the first142

to attempt to implement an algorithm for regular expressions in software.143

Thompson wrote the first UNIX version of what would become grep for144

a text editor called QED. QED was a rudimentary word processor, in an145

era before word processing—one of the very first tools that actually al-146

lowed people to directly manipulate a file on a screen or through a tele-147

type; hence it was natural that some facility for searching text would be148

a goal [van Dam and Rice, 1971, Meyrowitz and van Dam, 1982]. Indeed,149

the name grep’ itself derives from a set of commands that would have been150

issued in QED:151

152

G/re/P (Globally search for regular expression re and Print it)153

154

QED was written initially by Butler Lampson and Peter Deutsch [Deutsch and Lampson, 1967],155

two computer engineers at UC Berkeley working on the DARPA-funded156

Project GENIE, sister to Project MAC at MIT and one of the origins of157

many of the innovations that went into UNIX and modern time-sharing,158

multi-user operating systems [Lee et al., 1992]. That version of QED did159

3There is no scholarly historical work on UNIX and its origins at Bell Labs that ex-
plores the range of activities underway there. Salus [Salus, 1994] reports on the develop-
ment of the operating system in outline. Most of this work is available online, however,
in various places. See Dennis Ritchie’s web resources, for instance http://www.cs.bell-
labs.com/who/dmr/

8

not include regular expressions, or even the ability to search for arbitrary160

fixed strings. Ken Thompson received his BS and M.Sc. at Berkeley (1962-161

1966) and worked with Lampson and Deutsch on Project Genie. When162

he was hired to work at Bell Labs, and was sent to MIT to participate163

in Project MAC, one of the first things he did was to create a version of164

QED for the famous Compatible Time-Sharing System (later to become165

Multics).[Vleck, 2008] Thompson went on to create versions of QED for166

Multics and ultimately for UNIX, for which he dropped the Q and called it167

simply ed. ed in turn inspired a generation of powerful and difficult to use168

text editing programs still in wide use today, such as EMACS and vi .169

In 1968, Thompson also published a short “Programming Techniques”170

paper for the CACM in which he described the “Regular Expression Search171

Algorithm” he had implemented [Thompson, 1968]. What made regular172

expressions a more powerful tool for search was that they allowed for a173

kind of parallel processing. Rather than searching up and down a tree of174

possibilities through brute force, backtracking every time it fails, regular175

expressions allow the program to search more efficiently by “looking ahead”176

and figuring out which paths can be eliminated.4.177

It is not at all obvious, however, how Thompson reached this point. Prior178

to his implementation of this algorithm (which was originally written in As-179

sembly language for the IBM 7090, on which CTSS ran, and presented in180

4Russ Cox has written a technical history of the different implementations of the match-
ing engine that Thompson used, and those that are in use to day, demonstrating differ-
ences in efficiency and speed that have been lost over time [Cox, 2007]. The Algorithm
that Thompson implemented also bears some similarity to the general AI approach to
“reasoning as search” given the focus on pattern matching and backtracking. Thompson’s
use of regular expressions, however, seems to be the first such implementation and entirely
distinct from the AI tradition of problem solving.

9

the paper in Algol), there were no such attempts to use regular expressions181

in this way. Indeed, not many people would have known of their existence182

outside a handful of now famous people who had explored them in differ-183

ent forms—Stephen Kleene, John Von Neumann, Walter Pitts and Warren184

McCulloch, and Michael O. Rabin and Dana Scott. The link between these185

individuals and Thompson came from Janusz Brzozowski, who taught for186

a semester at Berkeley while Thompson was there, and who researched the187

use of formal languages for circuit design in engineering. Brzozowski in-188

troduced a method for using regular expressions to create “state-transition189

diagrams” which were widely used in the 1950s as a mnemonic for designing190

and implementing programs in circuits and in the computers of the 1950s191

[Brzozowski, 1964]. Thompson adopted Brzozowski’s ideas at a time when192

“software” was just emerging as concept and practice.193

Brzozowski’s work was part of an explosion of research in the late 1950s194

that forms the basis of abstract computer science today: the formaliza-195

tion of symbolic processing at the root of the logical operation of computers196

[Myhill et al., 1960, Nerode, 1958, Arbib, 1961, Copi et al., 1958, Hopcroft and Ullman, 1969].197

Michael O. Rabin and Dana Scott’s 1959 article “Finite Automatons and198

their Decision Problems” [Rabin and Scott, 1959] is frequently referenced as199

the apotheosis of this work. It was a formal description that might more200

accurately be understood as the theoretical ground for modern computers201

than Turing’s work of 20 years earlier [Turing, 1937]. Though indebted to202

Turing’s work, the formalization of computing in the late 1950s took the203

finite nature of existing computing devices as a realistic constraint in de-204

veloping a formal language that would allow for the manipulation of these205

10

devices. Such an approach took as its object of logical manipulation of206

symbols by finite automatons (whether human, machine or animal). It was207

based in no small part on the explorations begun earlier by Turing, Von208

Neumann, McCulloch and Pitts, and ultimately by Carnap and Whitehead209

and Russell.210

What should be clear to the reader is that these earlier attempts where in211

no way intended to produce a simple tool for matching patterns in text, but212

instead to explore the very basis of logical reasoning itself. What I show in213

the next section is that this exploration of logical reasoning is conducted as if214

it is an investigation into the basis of human reason; but it proceeds instead215

through the manipulation of objectified “logical instruments” which can be216

formalized, manipulated, explored and constructed as if they were tools, as217

if they were material objects.5 Attention to the media-specific creation of218

these tools (in their symbolic expression, their representation in diagrams,219

and ultimately in programming languages and in machines as running code)220

can help demonstrate how logical instruments have come into being and are221

progressively translated or modulated from medium to medium and mind222

to mind.223

From Principia Mathematica to Deus ex Machina224

Thompson’s paper on Regular Expressions is frustratingly vague about the225

origins of his idea. It has only four references: The IBM 7094 Programmer’s226

5The meaning of materiality is obviously at issue: objectification is probably a better
term, or concept-ification. It is not merely the symbolic character that is at stake, but
the ability to grasp the instrument as a singularity, as something with parts that can be
observed, moved, explored, replaced as if one were looking at a device.

11

manual, the paper by Brzozowski, a single paper about pattern matching in227

text (by Anthony Oettinger), and Stephen C. Kleene’s “Representations of228

events in Nerve Nets and finite Automata” [Kleene, 1956]. Kleene’s paper229

is a kind of hidden classic and the link between theories of automata and230

the language of “regular events and regular expressions” which Kleene in-231

troduced. Stephen Kleene was a graduate student at Princeton in the 1930s,232

where he worked alongside Alonzo Church and Alan Turing and made sub-233

stantial contributions in the field of “recursive functions.” Kleene wrote per-234

haps the single most famous textbook on the subject called Introduction to235

Metamathematics in 1952. Kleene’s 1956 paper describes what he called an236

“algebra of regular events.” It was published in a well-known volume called237

Automata Studies, edited by Claude Shannon and John McCarthy. Kleene’s238

paper is widely cited in the computer science literature, and is some ways239

one of his most famous worksbut it was not central to his research project,240

and he never returned to the subject.241

Kleene’s interest in the subject was motivated by his own work on the242

algebra of recursive functions. In the paper, he introduces a trio of mathe-243

matical operators that represent regular events: A + B (or union), A ◦ B (or244

concatenation), and A* (or the “Kleene Star” or iterate). Kleene’s paper is245

generally understood to be significant because it proves two theorems about246

the equivalence of regular events and finite automatons. But what makes it247

interesting in this context is where the idea to create such an algebra came248

from. In stating these theorems in the text, the origins of Kleene’s interest249

become clear:250

12

Theorem 3: To each regular event, there is a nerve net which251

represents the event by firing a certain inner neuron at time p252

+ 2, when started with suitable states of the inner neurons at253

time 1. If the event is describable by a prepositive and positive254

regular set of tables, the representation can be by a net started255

with all inner neurons quiet.256

257

Theorem 5: In any finite automaton (in particular in a McCul-258

loch Pitts nerve net), started at time 1 in a given internal state259

b1 the event represented by a given state existing at time p is260

regular. [Kleene, 1956, 0]261

What Kleene meant by “regular events” was an event processed by a262

set of nerve cells–an event of perception or of thought. Kleene’s paper263

says nothing about computers, programming, matching patterns in text or264

searching for text on a computerthe paper was not even composed on or near265

a computer, as the typescript would indicate. However, it is clear from the266

opening line of the article what “automata” are: “anything that receives267

stimuli, human, machine or animal.” It’s also clear that the inspiration268

for Kleene’s paper was the famous 1943 paper “A Logical Calculus of the269

Ideas Immanent in Nervous Activity” by Warren McCulloch and Walter270

Pitts [McCulloch and Pitts, 1943]. Indeed, Kleene adopted the same graphic271

diagrammatic representation that McCulloch and Pitts used to present his272

own definitions (See Fig 2)273

Kleene had written his paper in 1951, during a summer at RAND, after274

13

Merrill Flood, his sponsor at RAND and fellow grad student at Princeton,275

had given him McCulloch and Pitts paper to read [Kleene, 1979]. Upon276

reading this paper, Kleene’s first inclination as a mathematician was to push277

further the model it contained—a model of the brain as a logical calculus.278

Post-Gödelian logics being Kleene’s metier, he naturally wanted to formalize279

what McCulloch and Pitts had proposed as a model of the brain in terms280

of an algebra of recursive functions. In a reflection from 1981, Kleene said:281

I found [McCulloch and Pitts’] model to be very interesting—282

an original contribution—but their analysis of it to fall quite283

short of what was possible. So I did what cried out to be done284

with it (as it seemed to me) having newly in mind also the idea285

of a finite automaton, which came to me that summer at RAND286

through reading in printer’s proof (?) Von Neumann’s Hixon287

Symposium lecture.[Kleene, 1979, 0].288

What “cried out to be done” however, was probably not what McCulloch289

and Pitts would have cried out for. It is worth reflecting here on the misfit290

of intentions between these two papers. Whereas McCulloch and Pitts were291

interested precisely in creating a representation of thought (if not neurons292

per se), Kleene was not:293

our theoretical objective is not dependent on the assump-294

tions [about the neuro-physiological data] fitting exactly. It is a295

familiar stratagem of science, when faced with a body of data296

too complex to be mastered as a whole, to select some limited297

14

(a) Kleene’s Diagrams

(b) McCulloch and Pitt’s Diagrams

Figure 2: Kleene and McCulloch and Pitts’ diagrams of regular events

15

domain of experiences, some simple situations, and to undertake298

to construct a model to fit these at least approximately. Having299

set up such a model, the next step is to seek a through under-300

standing of the model itself. [Kleene, 1956, page].301

Kleene was not interested in whether McCulloch and Pitts’ model was302

accurate (that is, whether it really represented the state, function or struc-303

ture of a brain, or of thought)—what he takes from the paper is a model304

that just happens to be defined in terms of neurons and sensory inputs and305

organisms, but that was, for him, not yet fully explored in mathematical306

terms. In fact, what Kleene proved in his paper was that it wasn’t a model307

of human thought, per se, but a model of any finite automaton, whether308

animal, human, or machine, which is evident from his reference to von Neu-309

mann’s Hixon Symposium lecture on automata. Von Neumann was among310

the first to explore the idea of a general theory of automata using the tools311

of logic. The Hixon symposium is clear that, whereas for centuries we have312

relied on the mathematics of continuous variation to analyze nature, the313

emergence of computing technology has created a need for a more power-314

ful discrete mathematics that might be more amenable to the analysis of315

thought than that of classical mathematical analysis. Kleene takes this in-316

sight a step further: the implicit equivalence between the brains of animals,317

humans and machines in Kleene’s approach holds no necessary connection318

to actual brains or neurons, or even to the actual facts of thinking. Von319

Neumann intuited this as well when, in writing the famous “First Draft320

of a Report on the EDVAC.” Instead of simply describing the design of a321

16

computer in terms of vacuum tubes, wires, plug-boards and relays, von Neu-322

mann used McCulloch and Pitts diagrams of neurons as its formalism (see323

Fig. 3).324

Figure 3: McCulloch-Pitts Neurons in the text of the First Draft of the
Report on EDVAC by John von Neumann

For von Neumann and Kleene, the formal equivalence demonstrated by325

McCulloch and Pitts between brains and logical languages was also a formal326

equivalence suitable to a machine. This is not a metaphor. It is not a sugges-327

tion that computers should function like or as if they are brains, but rather328

the recognition of a certain utility, testability, or pragmatic rectifiability to329

this formalism. With the introduction of an algebra of regular events, Kleene330

created a useful, practicable formalism that within a matter of years would331

dominate the nascent field of computer science. To a generation of people332

who would become the first luminaries of computer science, Kleene’s paper333

was the first step towards a formal theory of actual and possible computer334

programs.335

In 1959, for instance, Michael Rabin and Dana Scott would publish “Fi-336

nite Automata and Their Decision Problems” [Rabin and Scott, 1959] which337

17

would become the locus classicus for future research into the classification of338

computer programs, their complexity and their solvability. What Thompson339

took from Kleene was not a model of a brain, or even an algebra, but a kind340

of logical toy, a structure with certain implications that could be explored,341

an object to think with that could potentially made to fit some new situa-342

tion. Indeed, somehow Thompson recognized that this algebra was a tool343

for efficiently matching patterns in text and employed the algebra to create344

an algorithm and a piece of working software. One might say this is an345

obvious case of science being “applied” to create technology, but the prob-346

lem is that whatever it is Kleene’s paper sets out, proleptically, as science,347

is not the technology that Thompson creates. Rather it is a translation of348

Kleene’s algebra into an algorithm, a paper and a program.6 And Kleene349

had in turn translated McCulloch and Pitts’ model into an algebra and a350

formalism now known as regular expressions for regular events, terms ini-351

tially meant to capture the sensory input experience of an organism or an352

automaton.353

Kleene’s formalization of McCulloch and Pitts transformed their ideas354

from the domain of representations of thought to the domain of representa-355

tions of automata, and hence made it useful as a tool—both a logical tool356

for thinking about thinking (i.e. thinking about logical reasoning) and a357

tool for designing thinking machines (i.e. designing and controlling circuits358

and eventually software). McCulloch and Pitts’ paper had no such goals in359

mind. Indeed, the paper is claimed as an origin point variously by cybernet-360

6And on top of that, a patent which represents the pattern-matching regular expression
algorithm in yet another kind of formalism, that of the legal language of claims in a patent
(3,568,156)

18

ics, neuroscience, mathematical psychology, cognitive science, mathematical361

biology, artificial intelligence, and the burgeoning subfield of computer sci-362

ence that studies neural nets and neural processing, quite in the absence it363

should be said of any brains other than those of the researchers7.364

McCulloch’s interest was initially in finding what he hypothesized as a365

“psychon”—or atomic unit of neural activity, which he first sought in his366

physiological research conducted during the 1930s in partnership with Yale367

physiologist J.G. Dusser de Barenne. In the early 1940s, McCulloch was368

introduced to Walter Pitts by Jerome Lettvin, and thereby to Nicholas Ra-369

shevsky’s Mathematical Biology group at the University of Chicago, where370

Walter Pitts had been actively working on models of neural activity with371

Rashevsky and mathematician Alston Householder. The collaboration be-372

tween the two was lopsided, at best. McCulloch was in his forties, Pitts373

was 17; McCulloch had spent his career in physiology and philosophy, Pitts374

was by various and sometimes unreliable accounts a mathematical prodigy375

who had run away from his home in Detroit and met Bertrand Russell in a376

park in Chicago [Smalheiser, 2000, Schlatter and Aizawa, 2008]. Together,377

however, they managed to piece together something that met in the mid-378

dle, a paper that demonstrated the formal equivalence between a plausible379

model of neural activity, and a logical calculus. Part of McCulloch and380

Pitts inspiration for their paper was Turing’s machine. As Tara Abraham381

puts it “Turing was able to define the complicated process of computation382

in ’mechanical’ terms, with the notion of a simple algorithm so exhaustive,383

7Tara Abraham has recently documented much of the intellectual context and
background of this paper [Abraham, 2003, Abraham, 2004, Abraham, 2007]. See also
[Kay, 2002] and [Piccinini, 2004]

19

rigorous and unambiguous that the executor would need no ’mathematical384

knowledge’ to carry out its task.” [Abraham, 2003, 18] This identification385

of computation with an automatic procedure provided the inspiration for386

McCulloch and Pitts to model a set of nerves as something that could also387

calculate “in the absence of mathematical knowledge.”388

In hindsight, what McCulloch and Pitts achieved was far more influen-389

tial in engineering, computer science and mathematics than it was in biology390

or neuroscience. Works that take McCulloch and Pitts logical calculus of391

nerve nets as a starting point have been extraordinarily bountiful in math-392

ematics and computer science. Accounts of Artificial Intelligence almost393

inevitably refer to this paper as one origin point, whether as inspiration394

or as foundation.8 By contrast, neurology and neurobiology have more or395

less dropped the formalization entirely, beginning at least with McCulloch396

and Pitts themselves, whose 1947 paper “How we know universals” and397

the 1959 paper they wrote with Lettvin and Maturana, “What the Frogs398

Eye Tells the Frog’s brain” [Lettvin et al., 1959, Pitts and McCulloch, 1947]399

both abandon the strict formal equivalence with propositional calculi or the400

Turing machine, in favor of more complex biological models which are less401

amenable to logical manipulation.402

The analogy between logic and thinking is obviously not unique to Mc-403

8Lily Kay points out that even though their paper is routinely adopted as an origin
point for AI, McCulloch was himself “not an AI enthusiast. He was far less interested in
machines that try to think than in the mechanical principle of thought (and by mechanical
he did not mean physicochemical or reductionist). He was attracted to ’Machines that
Think and Want’: how we know particulars and universals, the desire for food, woman and
bed, music, poetry, mathematics. And he sought a mathematical corrective to the mind-
less blackbox of behaviorism and the tripartite Platonic conjectures of psychoanalysis.”
[Kay, 2002, 603-4]

20

Culloch and Pitts. In most of philosophy and mathematics in the early404

twentieth century, and especially under the influence of the Hilbert pro-405

gram, logic and mathematics represent the capacity for human reason at its406

pinnacle. McCulloch and Pitts materialized this assumption in a representa-407

tion of neurons, adding a concrete formal specificity to an otherwise abstract408

set of claims about human reason. Like Thompson’s paper on Regular Ex-409

pressions, McCulloch and Pitts paper is exasperatingly short on citations:410

it has three, and none refer to previous work in biology or physiology, nor411

even to Turing’s work, but instead to arguably the three most famous at-412

tempts to formalize scientific reasoning of the 20th century: Whitehead and413

Russell’s Prinicipia Mathematica, Hilbert and Ackerman’s Foundations of414

Theoretical Logic and Rudolph Carnap’s Logical Syntax of Language.415

Despite McCulloch’s polymathic knowledge of physiology, the paper with416

Pitts is hopelessly imprecise (and avowedly so) in physiological terms. What417

drives the paper instead is the attempt to transform a logical calculus from418

one symbolic system to another—a symbolic system inspired by the obser-419

vation that neurons are connected together in networks and tend to either420

be firing electrical impulses or not, are either “on” or “off”.421

Walter Pitts was a student of Rudolph Carnap and had clearly read422

his work (on the advice of Bertrand Russell himself, so the story goes).423

However, what was it that McCulloch and Pitts took from Carnap? Was it424

a particular logical system or a set of propositions and theorems? Or was it425

the symbolism? What was it that “cried out to be done,” to echo Kleene,426

with Carnap’s work? I would argue that Carnap provided McCulloch and427

Pitts with the warrant they were looking for to creatively formalize their428

21

model.429

Carnap’s book, The Logical Syntax of Language, is the pinnacle of his430

attempts to define a philosophical language suitable to the analysis of scien-431

tific statements. In it, he constructs two kinds of artificial languages, labeled432

Language I and Language II. Language I is a highly restricted language that433

includes only the most basic postulates of the arithmetic of natural num-434

bers. Language II includes Language I as well as “indefinite” terms for all435

of mathematics and “the sentences of physics.” McCulloch and Pitts chose436

for their formalism, Language II, a choice widely regarded as unfortunate437

because of Carnap’s impossibly baroque symbolism. Nonetheless, it is not438

the formalism per se, nor the content, which they draw inspiration from439

so much as Carnap’s insistence that the choice itself is arbitrary. Carnap’s440

Logical Theory of Syntax is famous for this approach:441

In [this book], the view will be maintained that we have in ev-442

ery respect complete liberty with regard to the forms of language;443

that both the forms of construction for sentences and the rules of444

transformation (the latter are usually designated as ’postulates’445

and ’rules of inference’) may be chosen quite arbitrarily.... For446

language, in its mathematical form, can be constructed accord-447

ing to the preferences of any one point of view represented; so448

that no question of justification arises at all, but only the ques-449

tion of the syntactical consequences to which one or another of450

the choices leads, including the question of non-contradiction.451

(Logical Syntax of Language, p. xv, 1954 ed.)452

22

Carnap was justly famous, even among the logical positivists, for his453

vigorous hatred of metaphysics and of “meaningless” statements—a hatred454

most clearly visible in the 1932 article “The Elimination of Metaphysics455

through the Logical analysis of Language” [Carnap, 1932]. So it is perhaps456

oxymoronic to term this approach to the arbitrariness of logical language457

the “Principle of Tolerance,” which states: “It is not our business to set up458

prohibitions, but to arrive at conventions. (p. 51)” and “In logic, there are459

no morals. Everyone is at liberty to build up his own logic, i.e. his own form460

of language, as he wishes. All that is required of him is that, if he wishes461

to discuss it, he must state his methods clearly, and give syntactical rules462

instead of philosophical arguments. (52)”463

Only the principle of tolerance, the submission to the arbitrary, Carnap464

insisted, could lead us to “the boundless ocean of unlimited possibilities”465

that awaits us[SARKAR, 1996]. Hence, what McCulloch and Pitts picked466

up on was not that Carnap’s formalism was the most realistic, or accurate,467

or universal, but that its arbitrariness freed it from any putatively meta-468

physical presuppositions that might constrain it. It could be made into an469

experimental tool. It could be made into a brain, a brain-machine, or a470

brain-language—and the slippage amongst these things could be deliberate471

and refer implicitly, if not explicitly and precisely, to the activity of human472

thought.473

Like Turing’s machine, Carnap’s languages were meant to be the most474

mechanical and the most rigorous constructions of reason possible–but they475

were nonetheless constructions of reason. They are not, either in Turing’s476

case or in Carnap’s, instructions for the creation of machines with which hu-477

23

mans might think. For Carnap, the elimination of metaphysics was explicitly478

about creating protocols that define the understandability and analyzabil-479

ity of statements; but it was also an implicit ontology of introspection and480

thinking. Logical analysis provides a way to construct systems by which481

it is possible to reach valid conclusions without recourse to any inaccessible482

form of introspection or any revealed knowledge. That is to say, to construct483

machines that will demonstrate the answer to multiple parties regardless of484

any mathematical knowledge.485

Carnap, in a tradition stretching back to Leibniz, wanted his artificial486

languages to be the ultimate arbiters of dispute. No longer would human487

frailty, human weakness in its reliance on irrationality or its reference to488

the supernatural, be responsible for decision making when the best of all489

possible systems could be constructed to answer questions objectively and490

mechanically.9491

McCulloch and Pitts seem to have recognized something slightly different492

in this liberation of logic; they seem to have appreciated that the design493

of a logical system should not be constrained by our assumptions or our494

metaphysical beliefs, but should instead be an act of pure construction whose495

implications and consequences for the task at hand are all that matter.496

But McCulloch and Pitts did not use Carnap’s Language II to test the497

9Dreyfus locates his original critique of AI in just this age-old desire, which he refers
to as Platonic in origin. Dreyfus’ book is not a critique of reason per se, however, but
an alternative explanation of human reason drawing on concepts of embodiment and
background know-how [Dreyfus, 1992]. It does not, however, make any assumptions about
whether embodiment or background knowledge are themselves mediated by the presence
and proliferation of machines and symbol systems, regardless of whether they were created
with the intention of being able to reason autonomously. Thinking with machines seems
to me to fit into our “background” know-how in ways that neither AI nor Dreyfus seems
to give any credit.

24

soundness of their model, they were not making empirical statements about498

the brain which Carnap’s logic would verify. Rather what McCulloch and499

Pitts did was to prove the formal equivalence of their model neuron and500

that of Carnap’s logic; or to put it differently, they created yet another501

language—a brain-language or nerve-language—which they showed to have502

exactly the same expressive possibilities as Carnap’s syntax-language.10
503

McCulloch and Pitts brain-language is represented in their abstract im-504

ages of neurons which are carefully correlated with formal propositions from505

Carnap’s calculus. These abstract neural-net diagrams show up again and506

again in subsequent formalizations, such as Kleene’s work, and are ulti-507

mately central to neural network research of all kinds (See again, Fig 2).508

McCulloch and Pitts translation of Carnap (like Kleene’s translation of Mc-509

Culloch and Pitts and Thompson’s translation of Kleene) doesn’t try to510

preserve Carnap’s universal language, nor reduce the brain to it, it invents511

a new one, it translates it or remediates it.512

If one examines the work of Carnap, McCulloch and Pitts, Kleene and513

Thompson and later contributors to the development of regular expressions,514

one sees a continuity of an instrumental kind, even if that continuity does515

not map on to one of research programs, institutions or philosophical com-516

mitments. Indeed, if anything the “principle of tolerance” does not liberate517

reasoning from metaphysics at all, so much as it creates an entirely new kind518

of object to think with: logical instruments. McCulloch and Pitts’ insights519

10Lily Kay’s analysis of McCulloch and Pitts confirms this, in part. She argues that
what McCulloch and Pitts attempted to do was to bridge the formal analysis of the
brain with that of the mind: “Neurophysiology could expand to embrace mind, since that
mind—conceptualized within a new discourse of information—could now be embodied in
neural nets and investigated experimentally” [Kay, 2002, 600].

25

are mediated through, literally only thinkable through, the liberated logical520

mechanisms of Carnap or Turing. Just as Kleene’s are mediated through521

McCulloch and Pitts and Thompson’s through Kleene’s and so on. There522

is a stability and a coherence to the object registered by these researchers,523

even if the intentions and justifications for what they are doing seem to524

diverge or only converge on loosely and serendipitously.525

Conclusion526

Regular Expressions are everywhere today, which is a strange triumph if527

one sees in them a vestige of Carnap’s program. The fact that his approach528

to understanding thought might lead, through a circuitous but very con-529

crete path, to a tool used everyday to reformat symbolic information in our530

syntax-saturated, structured language-draped world is a curious fact. The531

continuity of regular expression raises a question that might be phrased in532

terms of Bruno Latour’s concept of “immutable mobiles”: what exactly is533

the “immutable” part of this mobile concept, ontologically speaking? What,534

if anything, remains of Carnap, in today’s regular expressions?11 Part of535

what is at stake is a creating a richer description of thinking about think-536

ing; one in which logical instruments are included as part of our repertoire for537

exploring ideas, exploring arguments and claims, and constructing concepts.538

Regular Expressions are a strategic example, since they form the very basis539

of “formal language” theory in computer science, as well as a ubiquitous540

tool for matching patters in text. One can also show a similar progression541

11Latour’s work on immutable mobiles appears in Drawing Things Together
[Latour, 1990]; See also Paul Rabinow on the concept of “remediation” [Rabinow, 2008].

26

with the related logical instrument “L-Systems” which similarly transformed542

from a model of biological growth, to a mathematical formalism, and ulti-543

mately to a widely used tool for generating computed visual forms, such as544

images of trees, flowers and neurons [Kelty and Landecker, 2004]. Similarly,545

one might look to other conventional features of contemporary computing:546

Bezier curves in illustration (and their origins in numerical controlled de-547

sign of automobile bodies in the fifties), or filters used in audio-video editing548

software (and their origins in electrical engineering, communications theory,549

or speech-processing research). All of these are clear cases of tools based in550

logic (because based in the construction of effective procedures required by551

our computing devices) which have come to populate our world.552

The success of logic, seen in this light, might also be measured oppo-553

site the putative “failure” of the classic AI program, especially in terms554

of the productive possibilities that result from research. Alan Newell and555

Herbert Simon’s famous “Logic Theorist” [Newell and Simon, 1956] was a556

program designed to prove the theorems of the Prinicipia Mathematica. At557

first glance, this would seem to be another and particularly nice example of558

the kind of translations seen in the case of regular expressions. However,559

Newell and Simon’s project made no explicit formal equivalence, it trans-560

lated nothing. They did invent a new artificial language—a precursor to the561

programming language LISP—but they did not attempt to prove that that562

language was equivalent to any other. Rather, the implicit formal equiva-563

lence maintained in AI is that between the human capacity for reason and564

proof of theorems by logical inference. Newell, Simon, McCarthy, Minksy565

and others aimed at a second creation, a robot race of machines more intel-566

27

ligent than humans. By contrast, the work of McCulloch and Pitts, Kleene,567

and especially Thompson led to the creation of something more like a com-568

panion species of logical instruments; logical instruments with and through569

which introspection and exploration is conducted. Rather than asking “Can570

machines think?” as AI relentlessly does, this minor tradition asks “Can571

humans think?” to which the answer is: not alone. We reason with logics,572

we form symbiotic relationships with them, we translate them from paper573

to machine, to patent to software.574

If one sees AI as the attempt to create a second race of thinking beings,575

then one can only pronounce its failure; but seen from the perspective of576

“logical instruments” AI might also be seen as a similarly successful research577

program—not “degenerative” at all (Dreyfus) but proliferative. Game en-578

gines, recommendation systems, virtual world non-player characters, and579

net-based commerce and advertising applications are everywhere. Computer580

scientists routinely speak of “agents” today instead of humans or thinking581

entities. The Rodney Brooks-inspired approach of creating large coordinated582

networks of very simple processes has dominated the research imagination583

since the early 1990s at least.584

Understanding AI as part of a tradition of logical instrument fashioning585

might also help explain the current explosion computer research traditions586

that surround us today: whatever the computer is, its much more than the587

machine on our laps or in our homes, and certainly much more than what588

Turing wrote about in 1936. Today there journals such as Soft Computing,589

BioSystems Natural Computing, The Journal of Applied Soft Computing,590

the IEEE transactions on Evolutionary Computaion and The International591

28

Journal of Unconventional Computing. There are GRID computers, mesh592

computers, computers made of DNA, molecular computers and “moleware”,593

reaction-diffusion chemical computing, quantum computers, spintronic com-594

puters, protein-based optical memories and processors, “computers” literally595

made of leech neurons and “membrane” computers (which are not made of596

membranes at all), tinker toy computers, “amorphous computers,” neural597

networks and genetic algorithms as well as an increasingly vibrant array of598

programmable logic devices like the field programmable gate array, to say599

nothing of a new generation of biological sensors that measure and compute600

everything from light intensity to fish freshness. All these variations are de-601

signed with logic instruments and become logical instruments for designing.602

They proliferate in direct response to the playfulness with which they are en-603

gaged, and this should tell us something about the history of thinking about604

thinking. Some of these proliferations tend towards a fantasy world in which605

everything is a computer. Cells compute, DNA computes, molecules com-606

pute, waves compute—indeed, this version of computation-as-intelligence is607

so generalized that its seems impoverished to continue making the implicit608

connection between logic and thought, and instead start thinking of them as609

logical instruments without which we cannot think, creatively or otherwise.610

29

Bibliography611

[Abraham, 2003] Abraham (2003). From theory to data: Representing neu-612

rons in the 1940s. Biology and Philosophy, 18(3):415–426.613

[Abraham, 2004] Abraham (2004). Nicolas rashevsky’s mathematical bio-614

physics. Journal of the History of Biology, 37(2):333–385.615

[Abraham, 2007] Abraham, T. H. (2007). Cybernetics and theoretical ap-616

proaches in 20th century brain and behavior sciences.617

[Agre, 1997] Agre, P. E. (1997). Computation and Human Experience. Cam-618

bridge University Press.619

[Arbib, 1961] Arbib, M. (1961). Turing machines, finite automata and neu-620

ral nets. J. ACM, 8(4):467–475.621

[Brzozowski, 1964] Brzozowski, J. A. (1964). Derivatives of regular expres-622

sions. J. ACM, 11(4):481–494.623

[Burke, 1995] Burke, T. (1995). Dance floor blues: the case for a social AI.624

Stanford Humanities Review, 4(2):221–248.625

30

[Carnap, 1932] Carnap, R. (1932). The Elimination of Metaphysics626

Through Logical Analysis. Logical Positivism, pages 60–81.627

[Copi et al., 1958] Copi, I. M., Elgot, C. C., and Wright, J. B. (1958). Re-628

alization of events by logical nets. J. ACM, 5(2):181–196.629

[Cox, 2007] Cox, R. (2007). Regular expression matching can be simple and630

fast. http://swtch.com/˜rsc/regexp/regexp1.html.631

[Deutsch and Lampson, 1967] Deutsch, L. P. and Lampson, B. W. (1967).632

An online editor. Commun. ACM, 10(12):793–799.633

[Dewey, 2004] Dewey, J. (2004). Essays in Experimental Logic. Dover Pub-634

lications.635

[Dreyfus, 1992] Dreyfus, H. L. (1992). What Computers Still Can’t Do: A636

Critique of Artificial Reason. The MIT Press, 1st edition.637

[Friedl, 2006] Friedl, J. (2006). Mastering Regular Expressions. O’Reilly638

Media, Inc., 3rd edition.639

[Hester et al., 2007] Hester, D. M., Talisse, R. B., and Burke, T. (2007).640

John Dewey’s Essays in Experimental Logic. Southern Illinois University,641

1st edition.642

[Hopcroft and Ullman, 1969] Hopcroft, J. E. and Ullman, J. D. (1969). For-643

mal languages and their relation to automata. Addison-Wesley Longman644

Publishing Co., Inc., Boston, MA, USA.645

31

[Kay, 2002] Kay, L. E. (2002). From logical neurons to poetic embodiments646

of mind: Warren s. McCulloch’s project in neuroscience. Science in Con-647

text, 14(04):591–614.648

[Kelty, 2008] Kelty, C. (2008). Two Bits: The Cultural Significance of Free649

Software. Duke University Press, Durham, N.C.650

[Kelty and Landecker, 2004] Kelty, C. and Landecker, H. (2004). A theory651

of animation: Cells, l-systems, and film. Grey Room, -:30–63.652

[Kleene, 1956] Kleene, S. (1956). Representation of events in nerve nets and653

finite automata. Automata Studies, 34:3–41.654

[Kleene, 1979] Kleene, S. (1979). Origins of recursive function theory. In655

Proceedings of the 20th Annual Symposium on Foundations of Computer656

Science (sfcs 1979)-Volume 00, pages 371–382. IEEE Computer Society657

Washington, DC, USA.658

[Latour, 1990] Latour, B. (1990). Drawing things together. In Lynch, M.659

and Woolgar, S., editors, Representation in Scientific Practice, pages 19–660

68. MIT Press, Cambridge, MA.661

[Lee et al., 1992] Lee, J., Rosin, R., Corbato, F., Fano, R., Greenberger,662

M., Licklider, J., Ross, D., and Scherr, A. (1992). The Project MAC663

interviews. Annals of the History of Computing, IEEE, 14(2):14–35.664

[Lettvin et al., 1959] Lettvin, J., Maturana, H., McCulloch, W., and Pitts,665

W. (1959). What the Frog’s Eye Tells the Frog’s Brain. Proceedings of666

the IRE, 47(11):1940–1951.667

32

[Linz, 2001] Linz, P. (2001). An Introduction to Formal Languages and Au-668

tomata. Jones and Bartlett, Boston, 3rd ed edition.669

[McCulloch and Pitts, 1943] McCulloch, W. and Pitts, W. (1943). A logical670

calculus of the ideas immanent in nervous activity. Bulletin of Mathemat-671

ical Biology, 5(4):115–133.672

[Meyrowitz and van Dam, 1982] Meyrowitz, N. and van Dam, A. (1982).673

Interactive editing systems: Part ii. ACM Comput. Surv., 14(3):353–415.674

[Myhill et al., 1960] Myhill, J., Laboratory, E. T., of Pennsylvania, U., and675

Division, W. A. D. (1960). Linear Bounded Automata WADD Tech. Note.676

Wright Air Development Division, Air Research and Technology Com-677

mand, United States Air Force.678

[Nerode, 1958] Nerode, A. (1958). Linear automaton transformations. In679

Proc. Amer. Math. Soc, volume 9, pages 541–544. JSTOR.680

[Newell and Simon, 1956] Newell, A. and Simon, H. (1956). The logic theory681

machine–a complex information processing system. Information Theory,682

IRE Transactions on, 2(3):61–79.683

[Okrent, 1991] Okrent, M. (1991). Heidegger’s Pragmatism: Understanding,684

Being, and the Critique of Metaphysics. Cornell University Press.685

[Okrent, 2007] Okrent, M. (2007). Rational Animals: The Teleological Roots686

of Intentionality. Ohio University Press, 1st edition.687

33

[Piccinini, 2004] Piccinini (2004). The first computational theory of mind688

and brain: A close look at mcculloch and pitts’s “Logical calculus of ideas689

immanent in nervous activity”. Synthese, 141(2):175–215.690

[Pitts and McCulloch, 1947] Pitts, W. and McCulloch, W. (1947). How we691

know universals the perception of auditory and visual forms. Bulletin of692

Mathematical Biology, 9(3):127–147.693

[Rabin and Scott, 1959] Rabin, M. and Scott, D. (1959). Finite automata694

and their decision problems. IBM Journal of Research and Development,695

3(2):114–125.696

[Rabinow, 2008] Rabinow, P. (2008). Marking Time: On the Anthropology697

of the Contemporary. Princeton University Press, Princeton.698

[Salus, 1994] Salus, P. H. (1994). A Quarter Century of UNIX. UNIX and699

open systems series. Addison-Wesley Pub. Co, Reading, Mass.700

[SARKAR, 1996] SARKAR, S. (1996). ”the boundless ocean of unlimited701

possibilities”: Logic in carnap’s logical syntax of language. Logical Em-702

piricism at Its Peak: Schlick, Carnap, and Neurath.703

[Schlatter and Aizawa, 2008] Schlatter, M. and Aizawa, K. (2008). Walter704

pitts and ”a logical calculus”. Synthese, 162(2):235–250.705

[Smalheiser, 2000] Smalheiser, N. R. (2000). Walter pitts. Perspectives in706

Biology and Medicine, 43(2):217–226. Volume 43, Number 2, Winter 2000.707

[Smith, 1996] Smith, B. C. (1996). On the Origin of Objects. MIT Press,708

Cambridge, Mass.709

34

[Suchman, 1987] Suchman, L. A. (1987). Plans and Situated Actions:710

The Problem of Human-Machine Communication. Cambridge University711

Press, 2nd edition.712

[Thompson, 1968] Thompson, K. (1968). Programming techniques: Regular713

expression search algorithm. Commun. ACM, 11(6):419–422.714

[Turing, 1937] Turing, A. (1937). On computable numbers. Proceedings of715

the London Mathematical Society, 2(42):230–65.716

[van Dam and Rice, 1971] van Dam, A. and Rice, D. E. (1971). On-line717

text editing: A survey. ACM Comput. Surv., 3(3):93–114.718

[Vleck, 2008] Vleck, T. V. (2008). Multicians.org. http://multicians.org/.719

35

