
The Durability of Software

Christopher Kelty and Seth Erickson

Software is neither material nor immaterial but durable,
entrenched and scaffolded. In this article we suggest that
services and software should be understood through the diverse
forms of durability and temporality they take. We borrow
concepts from evolution and development, but with a critical eye
towards the diagnosis of value(s) and the need for constant
maintenance. We look at examples from diverse cases—
infrastructural software, military software, operating systems
and file systems.

Keywords: software, durability, maintenance,
development, evolution, generative
entrenchment, scaffolding.

To appear in: I. Kaldrack and M. Leeker (2015). There is no Software, there are only
Services, Lüneburg, Germany: Meson Press.

Draft Version, please do not cite this version

2

Our goal this week is the conversion of mushyware to firmware, to transmute our
products from jello to crystals.

-- Alan J. Perlis, In the Keynote speech to
the 1968 NATO conference on Software
Engineering, p. 138.

A Software Coelacanth

In April 2014, a 60 Minutes report made a brief splash when it revealed that the
United States live nuclear weapons arsenals are using “antique” software and
hardware, such as floppy disks, microfiche and radiograph data and software
written in the 1970s. The Internets mocked the hopelessly outdated technology;
John Oliver’s studio audience for Last Week Tonight audibly gasped when he
showed them the image of a missileer holding an 8-inch floppy disk. Oliver’s
commentary: “Holy Shit! Those things barely look powerful enough to run Oregon
Trail, much less earth-ending weaponry.”

Many people accustomed to constant updates, rapid release cycles, beta-testing
and automatic upgrades found the story shocking—viscerally so since it concerns
the deadliest weapons on earth. The “silver lining,” as a Vice article put it, quoting
Major General Jack Weinstein, was that “cyber engineers [who analyzed the
network last year] found out that the system is extremely safe and extremely
secure in the way it's developed” (Richmond 2014). The dramatic tension is thus
driven by something unstated (that newer technology is always safer, better, more
efficient than old, legacy systems) in conflict with something intuitive (that it makes
very good sense not to connect these weapons to the Internet).

The software and hardware systems that run these 1970s era Minuteman launch
control systems are a kind of technological coelacanth: a living fossil. Isolated,
highly engineered, rigorously (one hopes) maintained, but never upgraded or
changed. Contrast this with what we might think of as the cichlids of contemporary
software: mobile apps, games, websites, APIs and services that appear hourly,
where updates are constant and the rate of extinction equally rapid. 1 The rise of
“Software as a Service”, “service-oriented architecture” or the “cloud” seems to
suggest that a qualitative shift towards a kind of hyper-instability is taking place:
instead of a stable “program” nothing but a temporary relationship of “queries”
across interfaces and devices, rendering something that was immaterial even

1 Cichlids are common, rapidly diversifying fish, comprising between 2000 and 3000

species, including things like Angelfish and Tilapia, and exhibiting a stunning diversity in
morphology and behavior.

Draft Version, please do not cite this version

3

more airy and vaporous. It would seem to follow that our economy and culture
are also becoming similarly cloudy—precarious, uncertain, distant, contracted.

The apparent transition—from software to services—raises a question: are they
different? What is the difference, and how best is that difference described? On
the one hand, one might assert that there is no difference at all because the
concept of service was built into software from the very beginning. Indeed, before
the word or the object software existed, there were programming services.2
Software had to be “unbundled” and “productized” to achieve a stability and
singularity we colloquially attribute to things like Microsoft Word or Adobe Creative
Suite. Whether it be the computer utility of the 1960s or the thin clients and netPCs
of the 1980s when Sun declared “the network is the computer,” services have been
a constantly desired goal all along. On the other hand, services today appear quite
different: the ease of reconfiguration, the openness of their accessibility, the
standardization of their functioning, and the reliance on a data-center-as-
computer model all seem to turn software, databases, archives, indeed even whole
companies into ephemeral conduits of information, query or control. Stable
“productized” software disappears in place of unstable, contractual
arrangements—Adobe Creative Suite becomes Adobe Creative Cloud, Microsoft
Word becomes Office 365—replete with a shift from a sense of ownership to one
of servitude.

But the desire to fix the difference between the two falls into an ontological trap—
demanding that the difference between the two be an abstract one of properties
and kinds (and rights) rather than one of temporality and use amongst humans.
Software studies occasionally suffers from a philological fantasy that the
conditions of operation of software are territorialized by programmability, rather
than the programmability of software being terrorized by time. Software and
service are thus an entangled set of operations which are better viewed from then
perspective of duration and temporality, and in particular that of a evolutionary
frame, than from the perspective of code, conduit, circuit, network, or other
aspects that privilege a spatiality or an intellectual abstraction that relies on
spatiality to make sense of it.

So in between the coelacanth of the Minute-Man missile software, and the cichlids
of the Apple App Store lies a whole range of software existing at different
temporalities and with different levels of durability. An evolutionary approach
makes sense here, but not simply in order to describe this diversification, but to
critically analyze where and how value and values—novelty, most centrally, but

2 On “software services” see (Campbell-Kelly and Garcia-Swartz 2011; Campbell-Kelly 2009).

Chun (2011) also makes this point.

Draft Version, please do not cite this version

4

also security, safety, freedom, health or risk—are structuring these temporalities.
“Evolution is not just any change and stasis, but particular patterns of change and
stasis, patterns that tend to preserve ancestry” (Wimsatt and Griesemer 2007:283).

We are far from alone in turning to the ideas of evolution-both those who create
software and those who study it frequently do so. For instance, within the field of
software engineering, the language of software evolution often replaces that of
repair and maintenance.3 And so-called “artificial life” researchers have long fallen
prey to the fantasy that because a program evolves it must be alive (Helmreich
1998; Riskin 2007). More recently, Lev Manovich, among others, has adopted a
loose language of evolutionary theory—but only, he insists, as a metaphor—to
explain change over time in the domain of media-production software (Manovich
2013).

Our exploration of evolutionary theory is not metaphorical, but critical and
analytic, viz. how to analyze populations of software differentially, and in order to
diagnose the values, ideologies or cultural technologies at work in and through
software. Our focus is not on code or the program, but on the population of
software—as engineers might say, the “installed base” of software, which
necessarily implies an ecology of users, designers, maintainers, as well as
organizations and physical facilities that must be kept running: made durable.

The durability of software is not an internal feature of a particular software
program or service, nor a feature of an abstract programmability or mathematical
facet, but instead a feature of its insertion into a social, economic and cultural field
of intention and expectation where it becomes differently. The Minute-man silo
stays stable for reasons that are different than the "stability" of the Linux kernel
(which changes often, in the name of a stability that maintains an unknowable
range of possible uses). The becoming of a "service" such as Facebook Connect is
much different than the simple query API provided by the Oxford English
Dictionary. Both are services, both depend on money and humans who care about
them—but the dynamics of their evolution and stasis are much different from
each other.

3 See for example the Journal of Software Maintenance, so called until 200, when it was

renamed the Journal of Software Maintenance and Evolution, until 2012, when it merged
with Software Process and Improvement to become The Journal of Software: Process and
Evolution. There are countless examples of the colloquial use of the term “evolution” in
software engineering, but there are also more precise attempts to characterize
software evolution, primarily as an analysis of the internal evolution, or ontogeny, of a
program (facilitated by the technology of versioning control systems) such as (Mens
and Demeyer 2008). There is also a ubiquitous “phylogenetic” obsession amongst
software programmers visible in the array of trees documenting the descent of
different software (e.g. Levenez’s Unix chart, http://www.levenez.com/unix/).

Draft Version, please do not cite this version

5

Evolution therefore is not just a theory of change or duration-- it is also about how
aspects of the past are preserved differentially in different ecologies. Software
does not evolve the same way everywhere—like life it is constantly diversifying.
Recognizing variation, heterogeneity, and the preservation of the past in the
present can serve an important analytical and critical function: to identify the
values, ideologies and cultural technologies that keep some systems stable and
slowly changing while demanding that others seem to change “at the speed of
thought.”

Software is not immaterial—this much is clear to anyone who studies it. But nor is
software a substance. The replacement of software by services, if such a
replacement is actually occurring, may be interpreted less as an ontological or
material shift, and more as a shift in the relationships of concurrency, dependency
and durability—software too has “modes of existence” (Latour 2013).

In this article we borrow two notions from developmental-evolutionary theory in
order to think about the patterns of change and stasis in software: generative
entrenchment and scaffolding. Wimsatt and Griesemer use these terms in order to
argue for a developmental understanding of cultural and biological evolution, as
opposed to a strictly gene/meme centered (á la Dawkins) one or a “dual-
inheritance model” (Richerson and Boyd 2005). This is felicitous given the concrete
fact that software is always paired with the word ‘development’ – though we ought
to be careful distinguish a “developmental biology” of software from software
development as an established methodology. We argue here that durability—
perhaps even “enduring ephemerality” as Chun (2011) calls it—is a result of
robustness and generative entrenchment—viz. when software becomes
foundational or otherwise locked into a network of uses and expectations, signaled
by maintenance—another key term in our analysis—and driven by particular
cultural and economic value(s). Maintenance of software, as software
professionals often recognize, is not quite the same as maintaining a bridge or
freeway: it is not about wear and tear or the failure of particular bits of software.
Rather it is about keeping software in synch with changes and dependencies made
in other software and systems (Ensmenger 2014).

Layers, Stacks, Entrenchments, Scaffolds

In most engineering textbooks, information systems are “layered” into “stacks” –
often a pyramid—with material, physical layers on the bottom and an increasing

Draft Version, please do not cite this version

6

ephemerality as one ascends.4 Such layers do exist, but they are hardly ever so
clean. In fact, it can sometimes be harder, more expensive or more dangerous to
change a bit of software than the hardware or the infrastructure on which it is
supposedly “layered” or stacked. Generative entrenchment is a real feature of
developmental entanglements, one that generates innovations by virtue of the
very necessity of the entangled part or function.5 How these entanglements came
about is a not pre-ordained or mechanical: it is matter for historical research into
the development of a project, the spread of software, the standards guiding them
(or failing to), and the reliance on expectations about the future of other
components in a system, and the values organized in lines of force around a given
software system.

Scaffolding as a concept serves a related analytical purpose. In building, scaffolding
is necessary but ultimately disappears when a structure is complete (thought it
often reappears for maintenance). In developmental psychology, scaffolding
happens when people provide boundaries within which others can learn and
develop skills. As they repeat these skills, the boundaries become less necessary.
In the process of software testing, something similar happens: tools representing
these boundaries (use cases, testing suites, different software environments like
browsers, or common failure scenarios) are constructed around the software to
test how it responds—as it is revised and improved these testing systems are torn
down and disappear. As the software stabilizes and becomes more robust, it
becomes generatively entrenched amongst other software systems and tools.
Something of this process is captured by the process known ubiquitously in
software engineering by the name of “bootstrapping”: the use of one software
system to design or construct another that either supplements or replaces it.
Similarly, “beta testing” might also be interpreted as using real users (or early
adopters) as scaffolding.

The appeal to these developmental evolutionary concepts is not proposed simply
in order to provide a description of pure dynamics, complex or simple. Rather, by

4 There are numerous meanings of the term “stack” in the history of software. Sometimes it

refers to an abstract data type in a programming language (adding something to a
memory stack); sometimes it refers to a layering of different technological features, as
in a “protocol stack”; and a more recent, more colloquial usage (e.g. “solution stack”)
includes the range of tools—programming languages, package managers, database,
libraries—that make up a particular web framework used for rapidly building and
deploying apps in different contexts. What they share is the attempt to capture how
“software” is always stacked, layered or interconnected in progress. No software is an
island, etc.

5 Blanchette (2011) discusses the example of modularity’s effects on “cross-layer”
innovation.

Draft Version, please do not cite this version

7

identifying dynamics and patterns, we can show how the values and the logics
operate: some entrenched software is maintained and some is not, and
maintenance implies a set of values that require critical interpretation (Jackson
2014; Orr 1996). Not all software is maintained because it is economically
valuable—Minuteman III missile systems, for instance, or the software that runs a
power grid. Failing to maintain it may have economic effects, but it is maintained
primarily in virtue of other values: security, safety, health, mobility, secrecy, etc.6
Even “archived” software must be maintained, and represents particular values:
preservation, recovery, evidence (Kirschenbaum 2008).

Beyond Old and New

It should not come as a surprise that there is great diversity in the world of
software. What is surprising is that we have no good way of taxonomizing it—or
studying it—other than the language of old, outdated, or obsolete vs. “cutting
edge” or new. The language of innovation privileges the linear and the incremental
over the spread of diversity or the interaction of different temporalities. The
supremacy of the value of novelty or innovation is a peculiarly modernist and
Western notion: novelty at all costs! And it implies a similar and opposite mistake:
to think of the old as similarly linear and incremental--as deposited, archived,
forgotten and in need of constant renewal. In fact, the perspective of evolution
demands a perception of newness everywhere and in many different forms that
persist: the past is not superceded, but preserved, differentially and in response to
a changing ecology (consisting of other things that are similarly new and old at the
same time).

The key critical or analytic moment therefore is not the identification of the new,
but the identification of a distinct population—a kind of curatorial maneuver—the
drawing of boundaries around a set of instances of the same kind such that
diversity and differentiation are made to appear. A few examples might indicate a
different path for how to study software.

To begin with: particular populations of operating systems are arguably the most
entrenched—and most generative—aspect of our software ecology. They come in
many forms, from the consumer-focused iOS and Android mobile OS (which is on
the order of 10 years old) to UNIX-derived operating systems (which are on the
order of half a century old). Add to this the various populations that are in some

6 In fact, there is a relatively robust economic niche where “obsolete” software is

maintained, e.g. The Logical Company (http://www.logical-co.com/) which re-creates
“hardware, software and diagnostic compatible” versions of DEC’s 1970s PDP
computers, giving that software a new temporality and durability

Draft Version, please do not cite this version

8

ways both old and new. The OpenVMS and Alpha operating systems were
originally designed in 1970s for DEC-VAX computers, but are still in use in old, new,
updated, emulated and migrated forms; OpenVMS runs India Railways’ reservation
system and the Paris Metro’s automated, driverless line 14.7

Similarly, entrenched programming languages (Cobol and FORTRAN) were at the
heart of the Y2K hysteria. Although the predicted apocalypse did not come, it did
reveal the problem of maintaining software—both its costs, and the kinds of values
(in this case, fear of apocalypse) that are necessary to disembed entrenched
software. Military systems, public infrastructure, factory process control (SCADA)
systems, all contain various forms of entrenchments and dependencies—some of
which are revealed dramatically (e.g. the case of the Stuxnet virus), some of which
are revealed only slowly through maintenance or breakdown.

Entrenchment and scaffolding can also make sense of the variety of basic tools in
use by software programmers—from compilers like gcc to programming
languages, libraries and their bindings. The latter—language bindings—are a good
example of generative entrenchment. Libraries of commonly used code in an
operating system are often written in particular languages, such as C, C++ or
assembly, often to facilitate re-use, and sometimes to make code more efficient
(an algorithm in C can be made to run much faster than one in Perl, for instance).
But because these libraries are “entrenched” in the operating system, they
“generate” the need for bindings: bits of code that access and sometimes
recompile a library for use with another programming language. Old technologies
“scaffold” new ones: stories of programmers’ need to re-write a program in
another language (whether for efficiency or elegance, or to access parts of an
entrenched system) are everyday evidence of the scaffolding process.

Indeed, in 2015, the range of new programming languages and frameworks for
rapidly building and deploying software have created vast but fragile webs of
entrenchment and interdependency. Web programming frameworks like Drupal
and Ruby on Rails are rapidly evolving – the underlying programming languages
(e.g., Ruby and php) are relatively new, the frameworks themselves are evolving as
their developers refine their approaches to the web, and (perhaps most
importantly) the individual modules and plugins for extending these frameworks
lead to a kind of “dependency hell.” One commentator (Hartig 2014) reflecting on
this historical difference in software said “compiling a C program from more than
20 years ago is actually a lot easier than getting a Rails app from last year to work,”

7 See for example: http://h71000.www7.hp.com/openvms/brochures/indiarr/
and http://en.wikipedia.org/wiki/Paris_M%C3%A9tro_Line_14

Draft Version, please do not cite this version

9

a clear indication, as evolutionary theory predicts, that innovations are abundant,
but not necessarily advantageous.

Some kinds of software are not generatively entrenched, even if they persist in
time or remain durable. The Minuteman missile base is an example—no other
software or hardware depends on the software created to control those missile
launch facilities, but it is nonetheless durably maintained as a closed system.

Other software is maintained because it is entrenched—both technically and
culturally. Take for instance the whole system of software that makes an
abstraction of “a file” possible: file systems, memory allocation, attributes and
permissions, and directory hierarchies. As the authors of a Microsoft Technical
Report (Harper et al. 2011) point out, the concept of “file” as a unit of data with
associated attributes (e.g., ownership, permissions) and canonical actions (copy,
edit, delete) has proven to be remarkably robust, changing little over the last forty
years. Most operating systems are built around files, which manage allocation of
memory and access to data; “pipes” and “files” were central to the design of UNIX,
which treats the everything as a file, including external devices like printers
(accessed through “device files”). Humans are also built around files: we expect
them to function in particular ways, to be stable and findable, to be ownable and
sharable.

Although the file is a seemingly essential concept, it is challenged by “service
oriented computing” or “cloud computing” where new a kind of “social” data is
associated with files, and where files exist simultaneously on multiple devices. In
this case it is not so much a particular piece of software code, but an essential
“abstraction” (and an implied set of interoperable components) that is entrenched
both in the hardware, and in the expectations of users. It is generative because
“the file” cannot simply be replaced in toto, but rather must be “piecewise” re-
engineered, guided by particular values.

Blanchette’s example (2011) of the Google File System demonstrates that even if
“the file” is not what it used to be, we still need the abstraction as a way to get the
“file” to appear manipulable and stable on a set of virtualized servers (preserving it,
and further entrenching it). Engineers might agree that there are “better” ways to
do things, but the file cannot be so easily disembedded from both human and
machine consciousness.

But: it is changing. “Scaffolding” can help us see how. iOS and Android operating
systems both “hide” files from users. They are not yet gone—the OS still relies on
them—but are embedded inside an “app” which has very quickly become the
primary mode of interacting with software on most devices (Apple 2014). It is very
hard to “open a file” on a phone or iPad, because the system is designed to hide

Draft Version, please do not cite this version

10

files and metadata about files inside an app—which is now intended to be the
primary abstraction for humans. For most purposes, however, “apps” do not
require users to open or close important files, and they solve the question of
“where is my stuff?” by putting it inside the app (and “in the cloud”). This creates a
kind of scaffold whereby users can change from an understanding of apps that
open files, to one where apps have data and resources tied to users, accounts and
devices. Some populations change faster than others.

This transition, however, is not simply an evolutionary fact. Rather, by
understanding the generative entrenchment and scaffolding of files and apps, we
can turn a more critical eye on what are otherwise simply dubbed technological or
engineering concerns. Among other things, the file abstraction supports a
particular model of property rights in which digital objects are literally designed
around stable property ownership: files must have owners and permissions. Apps,
by contrast, are designed around a different field of rights and laws: contracts and
terms of service—specifically non-negotiable contracts in which the app provider
has significantly more rights than the app user.

This is the “cultural technique” at the heart of the transition from “software” to
“services”: 20th century intellectual property rights law was designed for intangible
property fixed in “tangible media” and the myriad ways in which media was so
fixed in the era of “film, gramophone and typewriter.” Contract law, by contrast is
not about a relationship between the intangible and the tangible, it is about the
fixed duration of a relationship of trust, and a way of structuring the future in
terms of liability and responsibility. It is not an either/or situation, but as more and
more users enter into contracts, instead of purchasing property, the software itself
changes to support this cultural practice.

Apodosis: Legacy

The word “legacy” is one with a precise meaning in the history of information
technology. Legacy systems are every IT manager’s bogeyman; they are the cause
of “lock-in” they are the emblem of the evils of “proprietary” software; they are the
cause of Y2K bugs and the scourge of cyber-security, they represent the evils of
corporate capitalism, the domination against which “free software” and “open
source” are often pitched in battle.

But if evolution is “particular patterns of change and stasis that preserve ancestry”
then there is no way out of a legacy. Not all legacies are equally momentous,
however, just as not all inheritances are equally large. We would do well to
develop a better understanding of how ancestry has been and is preserved in
software systems, if we want to make any claim that innovations like “software as a

Draft Version, please do not cite this version

11

service” actually represent some break with the past. On the contrary—some
“services” will become entrenched; the seemingly flexible “solution stack” of today
is the legacy system of tomorrow. Even more importantly, there is no single legacy,
but a pattern of differences: a diversification with respect to environment. And if
we want to analyze the difference these differences make, we must move away
from treating software as substance—whether material substance or thought
substance: program, code, algorithm.

Actor Network Theory makes a simple point here: we do not live in a world with
humans as the foundation, nor in one simply run by the automaticities of
machines, but in a world of relations and modes. The difference that software
makes depends on how it is inserted into the relations amongst our associations—
but it is not inserted the same way everywhere. The effect of software—the
difference it makes—depends on the “patterns of change and stasis which
preserve ancestry” at play in any given case.

Thinking in terms of scaffolding and generative entrenchment might be an
antidote to the relentless anti-humanist teleology so common in both popular and
scholarly thinking. That teleology—a kind of neo-Spencerianism—is driven by
punditry and criticism that demands of software (and technology generally) that it
obey a law of ever-complexifying, ever-accelerating progress towards either the
domination of some imagined all-powerful capitalism or the liberation-destruction
of some fantasized autonomous artificial intelligence.8 This Refrain of Constantly
Accelerating Change contains a grain of truth—software has enabled new patterns,
new durabilities—but it misses the existence of diversity in the world, and the ways
in which it preserves ancestry. To view software evolution as an institutionally and
culturally heterogeneous object might allow us to critically diagnose its real effects,
rather than running ahead to the next new thing in order to declare its sudden
dominance, and the irrelevance of all the rest.

We thank the Part.Public.Part.Lab members for valuable conversation and feedback, Irina
Kaldrack and Martina Leeker for incisive comments, and the Digital Cultures Research Lab of
Leuphana University for the invitation to contribute.

8 See, for example, Ian Bogost’s op-ed on the subject “The Cathedral of Computation”

Atlantic Monthly, 15 Jan 2015;
http://www.theatlantic.com/technology/archive/2015/01/the-cathedral-of-
computation/384300/

Draft Version, please do not cite this version

12

Bibliography

Apple. 2014. “File System Basics.” iOS Developer Library. http://goo.gl/6icJ4u.

Blanchette, Jean-François. 2011. “A Material History of Bits.” Journal of the American
Society for Information Science and Technology 62 (6): 1042–57.
doi:10.1002/asi.21542.

Campbell-Kelly, Martin. 2009. “Historical reflections: The Rise, Fall, and
Resurrection of Software as a Service.” Communications of the ACM 52 (5): 28.
doi:10.1145/1506409.1506419.

Campbell-Kelly, Martin, and Daniel D. Garcia-Swartz. 2011. “From Products to
Services: The Software Industry in the Internet Era.” Business History Review 81
(04). Cambridge University Press: 735–64. doi:10.2307/25097422.

Chun, Wendy. 2011. “Programmed Visions Software and Memory.” Cambridge,
Mass.�: MIT Press,.

Ensmenger, Nathan. 2014. “When Good Software Goes Bad: The Surprising
Durability of an Ephemeral Technology.” In MICE (Mistakes, Ignorance,
Contingency, and Error) Conference. Munich.
http://homes.soic.indiana.edu/nensmeng//files/ensmenger-mice.pdf.

Harper, Richard, Eno Thereska, Siân Lindly, Richard Banks, Phil Gosset, William
Odom, Gavin Smith, and Eryn Whitworth. 2011. What Is a File? Microsoft
Research Technical Report MSR-TR-2011-109. Redmond, WA.

Hartig, Pascal. 2014. “Building Vim from 1993 Today.”
http://passy.svbtle.com/building-vim-from-1993-today.

Helmreich, S. 1998. “Recombination, Rationality, Reductionism and Romantic
Reactions:: Culture, Computers, and the Genetic Algorithm.” Social Studies of
Science 28 (1): 39–71. doi:10.1177/030631298028001002.

Jackson, Steven J. 2014. “Rethinking Repair.” In Media Technologies: Essays on
Communication, Materiality and Society, edited by Tarleton Gillespie, Pablo J.
Boczkowski, and Kirsten A. Foot, 221–39. Cambridge, MA: MIT Press.

Kirschenbaum, Matthew. 2008. Mechanisms�: New Media and the Forensic
Imagination. Cambridge Mass.: MIT Press.

Latour, Bruno. 2013. An Inquiry into Modes of Existence�: An Anthropology of the
Moderns.

Manovich, Lev. 2013. “Software Takes Command Extending the Language of New
Media.” London�: Bloomsbury Publishing,.

Draft Version, please do not cite this version

13

Mens, Tom, and Serge Demeyer. 2008. “Software Evolution.” New York�;;London�:
Springer.

Orr, Julian E. 1996. Talking About Machines: An Ethnography of a Modern Job. Ithaca,
N.Y: ILR Press/Cornell University Press.

Richerson, Peter J., and Robert Boyd. 2005. Not by Genes Alone: How Culture
Transformed Human Evolution. University of Chicago Press.
http://books.google.com/books?id=dU-KtEVgK6sC&pgis=1.

Richmond, Ben. 2014. “America’s Nuclear Arsenal Still Runs Off Floppy Disks.”
Motherboard (Vice Magazine), April.
http://motherboard.vice.com/read/americas-nuclear-arsenal-still-runs-off-
floppy-disks.

Riskin, Jessica. 2007. Genesis Redux: Essays in the History and Philosophy of Artificial
Life. Chicago: University of Chicago Press.

Wimsatt, W. C, and J. R Griesemer. 2007. “Reproducing Entrenchments to Scaffold
Culture: The Central Role of Development in Cultural Evolution.” In Integrating
Evolution and Development: From Theory to Practice, edited by Roger Sansom
and Robert N Brandon, 227–323. Cambridge, MA: MIT Press.

